Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

C. R. Girija, ${ }^{\text {a }}$ Noor Shahina Begum, ${ }^{\text {a }}$ M. A. Sridhar, ${ }^{\text {b }}$ N. K. Lokanath $^{\text {b }}$ and J. S. Prasad ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Studies in Chemistry, Central College Campus, Bangalore University, Bangalore 560 001, Karnataka, India, and
${ }^{\mathbf{b}}$ Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, Karnataka, India

Correspondence e-mail: noorsb@rediffmail.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.050$
$w R$ factor $=0.148$
Data-to-parameter ratio $=12.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

1-Dimethylamino-3-dimethyliminio-1-(p-methoxy-phenyl)prop-1-ene perchlorate

The title compound, $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}^{+} \cdot \mathrm{ClO}_{4}^{-}$, a methoxy-1-arylated vinamidinium salt, has been found to crystallize in the monoclinic space group $P 2_{1} / c$ at room temperature. The vinamidinium plane forms a dihedral angle of $61.2(1)^{\circ}$ with the benzene ring. The molecular packing is stabilized by $\mathrm{C}-$ H. . O interactions.

Comment

The title compound, (I), a 1-methoxy-arylated vinamidinium salt, was studied, as a member of a series of vinamidinium systems, in order to explore the possibility of these compounds showing non-linear optical properties.

Fig. 1 shows the structure of the title compound. The sums of the valence angles (Table 1) around atoms N 1 and N 2 indicate that these atoms are $s p^{2}$-hybridized. As observed in related vinamidinium systems (Girija et al., 2004a,b), the amino and imino groups are not clearly distinguishable, due to the delocalization of the electrons. The vinamidinium plane ($\mathrm{N} 1 / \mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 3 / \mathrm{N} 2$; r.m.s. deviation $0.136 \AA$) forms a dihedral angle of $61.2(1)^{\circ}$ with the benzene ring, indicating the noncoplanar disposition of the aryl ring with respect to the vinamidinium moiety. The exocyclic angles around atom C 7 show considerable asymmetry, with $\mathrm{O} 5-\mathrm{C} 7-\mathrm{C} 6\left[124.5(2)^{\circ}\right]$ being wider than $\mathrm{O} 5-\mathrm{C} 7-\mathrm{C} 8\left[115.3(2)^{\circ}\right]$, as observed in a related structure (Fun et al., 1996). This may be due to the steric repulsion between the methyl group and the benzene ring ($\mathrm{H} 6 \cdots \mathrm{H} 14 \mathrm{C}=2.23 \AA$). The $\mathrm{C} 14-\mathrm{O} 5-\mathrm{C} 7-\mathrm{C} 6\left[2.1(4)^{\circ}\right]$ and $\mathrm{C} 14-\mathrm{O} 5-\mathrm{C} 7-\mathrm{C} 8\left[-178.4\right.$ (3) ${ }^{\circ}$] torsion angles indicate that the methoxy group is almost coplanar with the benzene ring. The crystal structure is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (see Table 2). The compound does not exhibit second harmonic generation (SHG), since it has crystallized in a centrosymmetric space group.

Experimental

A formylating agent was obtained by the action of phosphoryl chloride and dimethylformamide in chloroform. To this reagent, p-methoxyacetophenone, dissolved in the same solvent, was added.

Received 11 February 2004
Accepted 9 March 2004
Online 24 March 2004

The mixture was heated under reflux, extracted with chloroform and treated with a saturated solution of sodium perchlorate in water. The compound was filtered off and dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ (Holy et al., 1965). Crystals were grown from ethanol at room temperature by slow evaporation

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}^{+} . \mathrm{ClO}_{4}^{-}{ }^{-}$
$M_{r}=332.78$
Monoclinic, P_{2} / c
$a=8.239(3) \AA$
$b=12.399(2) \AA$
$c=16.152(3) \AA$
$\beta=93.10(2) \AA$
$V=1647.5(7) \AA^{\circ}$
$Z=4$
$D_{x}=1.342 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Mo $K \alpha$ radiation
Cell parameters from 15 reflections
$\theta=6.9-8.0^{\circ}$
$\mu=0.26 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.3 \times 0.2 \times 0.1 \mathrm{~mm}$

Data collection

Rigaku AFC-7S diffractometer
$\omega-2 \theta$ scans
$h=0 \rightarrow 8$
4573 measured reflections
2632 independent reflections
2165 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=25.0^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.148$
$S=1.06$
2632 reflections
204 parameters
H-atom parameters constrained

Table 1

Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 1$	$1.332(3)$	$\mathrm{N} 2-\mathrm{C} 12$	$1.462(4)$
$\mathrm{N} 1-\mathrm{C} 10$	$1.466(4)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.402(4)$
$\mathrm{N} 1-\mathrm{C} 11$	$1.470(4)$	$\mathrm{C} 1-\mathrm{C} 4$	$1.486(3)$
$\mathrm{N} 2-\mathrm{C} 3$	$1.321(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.374(4)$
$\mathrm{N} 2-\mathrm{C} 13$	$1.459(4)$		
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 10$	$122.1(2)$	$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 13$	$120.9(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 11$	$123.5(2)$	$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 12$	$121.7(2)$
$\mathrm{C} 10-\mathrm{N} 1-\mathrm{C} 11$	$113.7(2)$	$\mathrm{C} 13-\mathrm{N} 2-\mathrm{C} 12$	$117.3(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 5$	$-123.3(3)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 9$	$58.1(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 5$	$58.0(4)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 9$	$-120.5(3)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 \cdots{ }^{\text {c }}{ }^{\text {i }}$	0.93	2.59	3.325 (4)	136
$\mathrm{C} 10-\mathrm{H} 10 \mathrm{C} \cdots \mathrm{O} 3^{\text {ii }}$	0.96	2.59	3.379 (5)	140
$\mathrm{C} 11-\mathrm{H} 11 A \cdots \mathrm{O} 1^{\text {iii }}$	0.96	2.55	3.251 (5)	130
$\mathrm{C} 11-\mathrm{H} 11 B \cdots \mathrm{O} 3^{\text {ii }}$	0.96	2.59	3.393 (6)	141
$\mathrm{C} 12-\mathrm{H} 12 \mathrm{C} \cdots \mathrm{O}^{\text {iv }}$	0.96	2.59	3.506 (4)	160

Symmetry codes: (i) $-x, 1-y,-z$; (ii) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$; (iii) $x, \frac{1}{2}-y, z-\frac{1}{2}$; (iv) $1-x, 1-y, 1-z$.

H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.93-0.96 \AA)$ and allowed to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})$ set at $1.5 U_{\text {eq }}(\mathrm{C})$ for the methyl H atoms and at $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for the other H atoms. A rotating group model was used for the methyl groups.

Figure 1
ORTEP-3 (Farrugia, 1997) diagram of the title compound, showing 50\% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2
Packing diagram of the title compound, viewed approximately down the b axis.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1995); program(s) used to solve structure: DIRDIF96 (Beurskens et al., 1996); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 1990).

CRG thanks the UGC-FIP for a Teacher Fellowship. The authors thank the Department of Science and Technology, India, for financial assistance under project No. SP/12/FOO/ 93. The authors also thank Professor P. K. Das, IPC, IISc, for SHG measurements.

References

Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., García-Granda, S., Gould, R. O., Smits, J. M. M. \& Smykalla, C. (1996). The DIRDIF96 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Fun, H.-K., Yip, B. C., Tian, Y. P., Duan, C. Y., Lu, Z. L. \& You, X. Z. (1996). Acta Cryst. C52, 87-89.
Girija, C. R., Begum, N. S., Sridhar, M. A., Lokanath, N. K. \& Prasad, J. S. (2004a). Acta Cryst. E60, o586-o588.

Girija, C. R., Begum, N. S., Sridhar, M. A., Lokanath, N. K. \& Prasad, J. S. (2004b). Acta Cryst. E60, o589-o591.
Holy, A., Krupicks, J. \& Arnold, Z. (1965). Collect. Czech. Chem. Commun. 30, 4127-4129.
Molecular Structure Corporation (1992). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1995). TEXSAN. Version 1.7. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.

